Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.

نویسندگان

  • T Kim
  • J E Dykstra
  • S Porada
  • A van der Wal
  • J Yoon
  • P M Biesheuvel
چکیده

Capacitive deionization (CDI) is an electrochemical method for water desalination using porous carbon electrodes. A key parameter in CDI is the charge efficiency, Λ, which is the ratio of salt adsorption over charge in a CDI-cycle. Values for Λ in CDI are typically around 0.5-0.8, significantly less than the theoretical maximum of unity, due to the fact that not only counterions are adsorbed into the pores of the carbon electrodes, but at the same time coions are released. To enhance Λ, ion-exchange membranes (IEMs) can be implemented. With membranes, Λ can be close to unity because the membranes only allow passage for the counterions. Enhancing the value of Λ is advantageous as this implies a lower electrical current and (at a fixed charging voltage) a reduced energy use. We demonstrate how, without the need to include IEMs, the charge efficiency can be increased to values close to the theoretical maximum of unity, by increasing the cell voltage during discharge, with only a small loss of salt adsorption capacity per cycle. In separate constant-current CDI experiments, where after some time the effluent salt concentration reaches a stable value, this value is reached earlier with increased discharge voltage. We compare the experimental results with predictions of porous electrode theory which includes an equilibrium Donnan electrical double layer model for salt adsorption in carbon micropores. Our results highlight the potential of modified operational schemes in CDI to increase charge efficiency and reduce energy use of water desalination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of operational conditions on the electrosorption efficiencies of Capacitive deionization

Capacitive deionization (CDI) represents a novel electrosorption process for the desalination of brackish water. The CDI working principle depends on the use of porous carbon materials as electrodes. CDI electrodes possess a charged surface that results in adsorption of salt ions by being charged in low voltage and it desorbing the salt ions by applying a reverse potential to the electrodes. CD...

متن کامل

Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions

Capacitive deionization has been developed as a promising desalination alternative for removing ions from aqueous solutions. In this study, the evaluation of capacitive performance was carried out by galvanostatic charge/discharge and cyclic voltammetry experiments. The good capacitive and electrosorption behaviors suggest carbon aerogel not only treated as an electrical double layer capacitor,...

متن کامل

Water desalination using capacitive deionization with microporous carbon electrodes.

Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positi...

متن کامل

Energy breakdown in capacitive deionization.

We explored the energy loss mechanisms in capacitive deionization (CDI). We hypothesize that resistive and parasitic losses are two main sources of energy losses. We measured contribution from each loss mechanism in water desalination with constant current (CC) charge/discharge cycling. Resistive energy loss is expected to dominate in high current charging cases, as it increases approximately l...

متن کامل

Using Reinforcement Learning to Make Smart Energy Storage Source in Microgrid

The use of renewable energy in power generation and sudden changes in load and fault in power transmission lines  may cause a voltage drop in the system and challenge the reliability of the system. One way to compensate the changing nature of renewable energies in the short term without the need to disconnect loads or turn on other plants, is the use of renewable energy storage. The use of ener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 446  شماره 

صفحات  -

تاریخ انتشار 2015